Design Analyzer

is a new method for analyzing the contents of a design for complexity and content. This information is often used for costing and quoting purposes and can be used to reduce the cost of manufacturing the design.

This is an example of the resulting data used in the internal CAM350 reporting mechanism. This can be saved and/or printed.

This is the preferred reporting option, using the mhtml format, which can be used and modified as desired by the End user.

The reason for analyzing a PCB design goes beyond verifying that it meets certain design rules. With Design Analyzer users can analyze the overall complexity of the design and with that data, make a more informed decision on many subjects such as which fabricator is most qualified to manufacture it. By running Design Analyzer, designers may be able to change just a few rules in the design and allow it to be manufactured more quickly and accurately.

An example would be a design that the clearances on a plane layer were defaulted to “x”/size over the drill size. Board shop “A” may charge a premium to manufacture boards with this design. Board shop “B” may not even be able to manufacture boards with this technology. The designer may have used this value as a default, even though the layout allowed them to use a larger value. Redefining their designs to the larger value may result in a less expensive board, or a more accurate result from the Fabricator.

In contrast a Fabricator will use Design Analyzer for generating quotes on incoming designs. The flexible output choices contained in Design Analyzer allows the Fabricator to use the information generated in their existing quoting system to generate more accurate quotes.

The reason for analyzing a PCB design goes beyond verifying that it meets certain design rules. With Design Analyzer users can analyze the overall complexity of the design and with that data, make a more informed decision on many subjects such as which fabricator is most qualified to manufacture it. By running Design Analyzer, designers may be able to change just a few rules in the design and allow it to be manufactured more quickly and accurately.

An example would be a design that the clearances on a plane layer were defaulted to “x”/size over the drill size. Board shop “A” may charge a premium to manufacture boards with this design. Board shop “B” may not even be able to manufacture boards with this technology. The designer may have used this value as a default, even though the layout allowed them to use a larger value. Redefining their designs to the larger value may result in a less expensive board, or a more accurate result from the Fabricator.

In contrast a Fabricator will use Design Analyzer for generating quotes on incoming designs. The flexible output choices contained in Design Analyzer allows the Fabricator to use the information generated in their existing quoting system to generate more accurate quotes.